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PID design method

• For a long time, the development of PID controller design methods has been the 
goal of the control community. Despite that manual model-free tuning of 
controllers is still the most commonly used PID design method in industry.

• Tuning rules (Ziegler-Nichols, Lambda tuning, AMIGO method [1],  Internal model 
control, Skogestad’s SIMC method [2], … )

Universal relations between model and controller parameters.

• Optimization-based method (MIGO [3], SWORD [4], MATLAB pidTuner, hinfstruct )

Treats each process model individually. 

[1] Astrom, K.J. and T. Hagglund: Advanced PID Control. ISA, 2006, ISBN 1-55617-942-1
[2] Sigurd Skogestad and Chriss Grimholt. “The SIMC Method for Smooth PIDController Tuning”. PIDControl in the Third Millennium.Springer. 2012
[3] Astrom, K.J., Panagopoulos, H., Hagglund, T.: Design of PI Controllers based on Non-Convex Optimalization. Automatica, Vol. 34, No. 5, pp. 585-601, 1998.
[4] Garpinger O. Analysis and Design of Software-Based Optimal PID Controllers. PhD Thesis, Department of Automatic Control Lund University, 2015.



There exists no generally accepted design method 
for PID controller

High Order Plant High Order Controller

Low Order Plant Low Order Controller

LQG or H∞
Design

LQG or H∞
Design

Model
Reduction

Controller
Reduction

Direct
Design

The design procedures associated with modern control theory (Hinf, LQR) 
provide high order controllers. Practice prefers simple controllers.

Anderson, B.D.O.: Controller Design Moving from Theory to Practice. 1992 Bode Prize Lecture. 



Requirements for effective design method

• It should be applicable to a wide range of systems (i.e. stable/unstable/non 
minimal phase/oscillatory process transfer functions)

• It should have the possibility to introduce specifications that capture the essence 
of real control problems (i.e. robustness/performance trade-off, servo/regulator 
problem)

• The method should be robust in the sense that it provides controller parameters 
if they exist, or if the specifications cannot be meet an appropriate diagnosis 
should be presented



The general H∞ Control Problem
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PID Hinf Designer
(www.pidlab.com/pidhinf)

• PID Hinf Designer is the first advanced easy to used web design tool for the analysis and design of optimal PI(D) 
controllers with respect to performance integral criteria IE, IAE, ITAE, ISE and Hinf robustness constraints. 

• PID Hinf Designer can be used for a wide range of proces models (unstable, non-minimal phase, oscillating, time-
delayed systems, systems of any order, …) and also for so-called model sets created from any number of process 
transfer functions.

• Supported design specifications reflect the essence of real control problems. Optimization of integral criteria IE, 
ISE, IAE, ITAE under Hinf constraints is supported for both load disturbance attenuation and set-point tracking 
problems).

• Designing of PI(D) controller with typical specifications using PID Hinf Designer is a routine procedure that does not 
require deeper knowledge of control theory from the user. 

• With more skills and efforts from the designer it should be possible using PID Hinf Designer to design high 
performance PID controllers extended with a suitable linear compensator (Cascade Controller, Resonant Controller, 
Smith Predictor, Repetitive Control, …).

• PID Hinf Designer also supports simple process models obtained from popular identification experiments. 
Specifically, two- or three-parameter models obtained from the step response of the process are supported, as well 
as models obtained from the relay experiment (based on the knowledge of one point of the frequency response). 
Moreover, the non-standard moment model set provided by the PIDMA-autotuner from the company REX Controls 
is also supported. 



PID Hinf Designer Options
(www.pidlab.com/pidhinf)
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PID Hinf Designer GUI
(www.pidlab.com/pidhinf)

Entering transfer
functions of processes

Selection of a model set

Enter H∞ limitations

Select the controller type

1

2

Create a closed-loop 
assembled transfer function
(e.g. for cascade control)

The resulting controller

H∞ region selection

Manual tuning 
of the controller

Enter weighting functions 
and compensators

Select weighting functions,
compensators, systems,
sensitivity functions and 
values of H∞ limitations

Estimate kd (PID) :
Manually
Automatically

Estimate tau (PID) :
Manually

Selection of the design 
criterion

1

2



PID Hinf Designer GUI – Systems Editor

Rational Transfer Function
+ Time Delay

Parameter Uncertainty
Model Set

(See Appendix D)

Experimentally Determined
Model Set 

(See Appendix E)

System Identification
Experimental I/O data

(See Appendix F)



Parameter Plane Formulation of Basic 
PI-Controller Design Problem
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Parameter Plane Formulation of Basic 
PID-Controller Design Problem
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H∞ limitations supported 

Servo problem 

(set-point tracking)
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𝐻∞-Region in the Parametric Plane 𝑘𝑖 − 𝑘𝑝
(It contains all PI controllers that meet the specified H∞ limitations)
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Example of Simple Design specification 
of PI-controller for FOPDT system
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PID Hinf Designer
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More General Formulation of  Design Problem
(fully supported by PID Hinf Designer, www.pidlab.com/pidhinf)
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Example of Design Specification of Robust 
PI-controller for Process Model Set
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PID Hinf Designer
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Conclusion

• PID Hinf Designer is the first advanced easy to used web design tool for the analysis and design of optimal 
PI(D) controllers with respect to performance integral criteria IE, IAE, ITAE and 𝐻∞ robustness constraints.

• PID Hinf Designer can be used for a wide range of proces models (unstable, non-minimal phase, oscillating, 
time-delayed systems, systems of any order, …) and also for so-called model sets created from any number 
of process transfer functions.

• PID Hinf Designer provide a new explicit algorithm to determine the 𝐻∞- regions in the parameter plane of 
PI controller for all commonly used 𝐻∞ limitations of the weighted sensitivity functions.

• PID Hinf Designer also supports simple process models obtained from popular identification experiments. 
Specifically, two- or three-parameter models obtained from the step response of the process are supported, 
as well as models obtained from the relay experiment (based on the knowledge of one frequency point). 
Moreover, the non-standard moment model set provided by the PIDMA-autotuner from the company REX 
Controls is also supported. 

• Designing of PI(D) controller with typical specifications using PID Hinf Designer is a routine procedure that 
does not require deeper knowledge of control theory from the user. 

• With more skills and efforts from the designer it should be possible to design high performance PID 
controllers extended with any linear compensator suitable (Resonant Controller, Smith predictor, Repetitive 
Control, …).



For more details see: Schlegel M., Medvecová P., Design of PI Controllers:  Region Approach. 
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Appendix A (3)
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Example:  region for unstable process:
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Appendix A (4)
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Auxiliary Tools   > Multiparametric Analysis
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Appendix B: Selection of kd and tau
If there exists a PI controller for the 

given design specification with p

It is recommended to start wi

arameters , , ( = ), then it is recommended to estima

th the ideal PID controller

te

0  

 

 ( ).

p i i p ik k T k k

 =

2 2optimal  in the interval 0.2 ,0.3  manually or with the help of GUI build-in function (*).d p i p ik k k k k  

(*)



Appendix G: Application Examples



Magnetic Levitation System
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Fem1—attraction force of the upper electromagnet [N],
Fem2—attraction force of the lower electromagnet [N],
Fg—force of gravity [N],
g—acceleration of gravity—9.81 [m/s2]
m—mass of ball—0.0571 [kg],
u1—electric voltage of the upper coil—<umin, 1>, 

umin = 0.00498 [V],
u2—electric voltage of the lower coil—<umin, 1> [V],
xd—distance between the magnets minus the ball 

diameter—defined by user [m],
x1—distance from the upper magnet to ball

—<0, 0.016> [m],
x2—linear speed of the ball [m/s]
x3—coil current of the upper electromagnet

—<imin, 2.38>, 
imin = 0.03884 [A],

x4—coil current of the lower electromagnet
—<imin, 2.38> [A].



Magnetic Levitation System: Linear Model Set
Transfer Functions from u1 to x1 (u2=0)
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[ML1] Hypiusová M., Kozáková A.: Robust PID Controller Design for the Magnetric Levitation System: Frequency
Domain Approach. 21st International Conference on Process Control (PC), June 6-9, 2017, Štrbské Pleso, 
Slovakia



PID Hinf Designer
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Comparison with the PID-controller proposed in [ML1]
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Longitudinal motion of F4E fighter aircraft
We consider a model of the longitudinal motion of an 

F4E fighter aircraft [LM1], [LM2]. The input is the elevator 

position, the output is the pitch rate, and the system is 

linearized around four repre
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PID Hinf Designer

 1 2 3 4Model Set: , , ,
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Comparison with the P-controller proposed in [LM2]
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Benchmark Problem for Robust Control
Wie, B. and D.S. Bernstein (1990). A benchmark problem for robust control design. In: Proc. American 

Control Conference. San Diego, CA, USA. pp. 961–962.
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PID Hinf Designer
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PID Controller Design using One Frequency Point

  ( )1 1 1 1

 (One Point Model Set). We are given one disturbance free sample of the plant frequency 

responce ,  and a fixed 2,.., . A plant model ( ) is an element of the plant family ,  

if

nF n P s S F − 

Definition

( )

 it is consistent with the two following conditions:

(i) (A priori Hyposisis)

1
,

( )

where ( ), deg( ( )) , is a polynomial with real 

    nonnegative coeficients, and all roots of ( ) lie in 

    the 

P s
p s

p s p s n

p s

=



( 

1 1 1

interval ,0 .

( ) (Experimental Data Interpolation)

( ) , 2 arg ( ) 0.

ii

P j F P j  

−

= −  

-2 -1 0 1 2 3

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

0 2 4 6 8 10

0

2

4

6

8

10

12

14

16

SCHLEGEL, M.: Nový přístup k robustnímu návrhu průmyslových regulátorů. Habilitační práce, Západočeská univerzita v Plzni, 2000.
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Main Idea of Solution
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an active role in the Nyquist curve constraints.
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PID-Autotuner PIDMA
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