Process Control 2023

Analytical Design of a Wide Class of Controllers with Two Tunable Parameters Based on H_∞ Specifications

Michal Brabec, Miloš Schlegel

Faculty of Applied Sciences University of West Bohemia Pilsen, Czechia

Contents

- Motivation
- Affine-structured Controller
- H_∞ Formulation of Design Problem
 o Single-model Design
 o Multi-model Design
- Implementation
- PID H_{∞} Designer software tool
- Examples

Motivation for the development of a new method for the H_{∞} design of controllers with a fixed structure

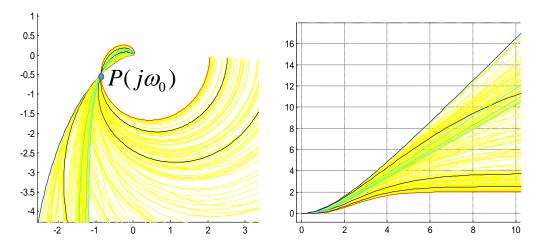
Design a fixed PI controller for a linear stable system with the transfer function in the form

$$P(s) = \frac{k_P}{s^l (\tau_1 s + 1) (\tau_2 s + 1) \cdots (\tau_N s + 1)}, \quad l \in \{0, 1\}, \quad \tau_i > 0, \quad N \text{ is arbitrary integer,}$$

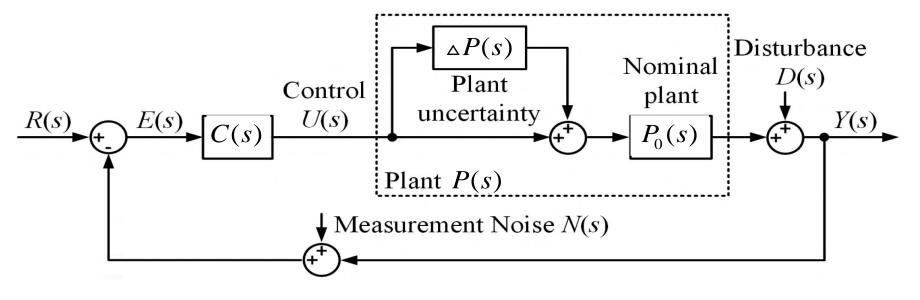
based on the knowledge of only the single point of the frequency response $P(j\omega)$ at frequency ω_0 , that the sensitivity function of the closed

loop satisfies the condition

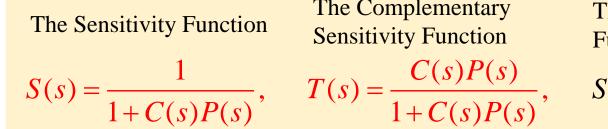
for all transfer functions P(s) described above.



A Typical Feedback Control Configuration Robustness/Performance Channels



Y(s) = T(s)(R(s) - N(s)) + S(s)D(s) $E(s) = \frac{\mathbf{S}(s)(R(s) - D(s)) + \mathbf{T}(s)N(s)}{\mathbf{S}(s)}$



The Complementary Sensitivity Function

The Input Sensitivity Function

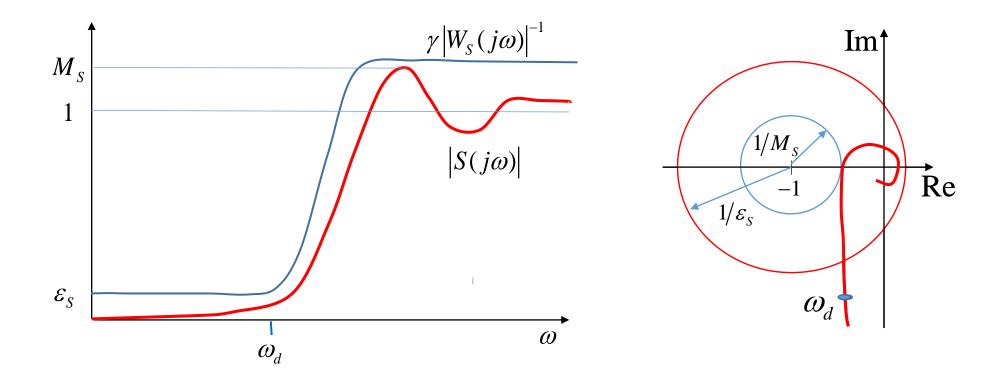
$$S_P(s) = \frac{P(s)}{1 + C(s)P(s)},$$

The Output Sensitivity Function

$$S_C(s) = \frac{C(s)}{1 + C(s)P(s)}$$

Typical Constraint on Sensitivity Function

 $\left\|W_{S}(s)S(s)\right\|_{\infty} < \gamma \iff \forall \omega \colon \left|S(j\omega)\right| < \gamma \left|W_{S}(j\omega)\right|^{-1}$



Some History of The H_{∞} Control Problem

- The origins of the H_{∞} -problem date back to the 1960s, when Zames discovered the small gain theorem and extended classical control techniques to MIMO control architectures.
- In nominal H_{∞} synthesis, full-order H_{∞} feedback controllers are computed via semidefined programming (1994) or algebraic Riccati equations (1989).
- Analytical H_{∞} design of PI controllers (1998).
- Structured H_{∞} synthesis in MATLAB (hinfstruct) via nonsmooth optimizers (2011).

The Affine-structured Controller (AF-controller)

 $C_{AF}(s,k) \triangleq k_q Q(s) + k_r R(s) + F(s),$

where Q(s), R(s), and F(s) are arbitrary proper rational transfer functions; k_q , and k_r are tunable controller parameters, and $k = \begin{bmatrix} k_r, k_q \end{bmatrix}^T \in \mathbb{R}^2$ is the vector parameter.

Typical examples :

PI controller:
$$Q(s) = 1$$
, $R(s) = \frac{1}{s}$, $F(s) = 0$; $C_{PI}(s) = k_q + k_r \frac{1}{s}$
PD controller: $Q(s) = 1$, $R(s) = \frac{s}{\tau s + 1}$, $F(s) = 0$; $C_{PD}(s) = k_q + k_r \frac{s}{\tau s + 1}$
PR controller: $Q(s) = 1$, $R(s) = \frac{2\omega_c s}{s^2 + 2\omega_c s + \omega_0^2}$, $F(s) = 0$; $C_{PR}(s) = k_q + \frac{2\omega_c s k_r}{s^2 + 2\omega_c s + \omega_0^2}$
PID controller: $Q(s) = \frac{1}{s}$, $R(s) = \frac{s}{\tau s + 1}$, $F(s) = k_p$; $C_{PID}(s) = k_p + k_q \frac{1}{s} + k_r \frac{s}{\tau s + 1}$

Other parameters except the two tunable ones must be fixed!

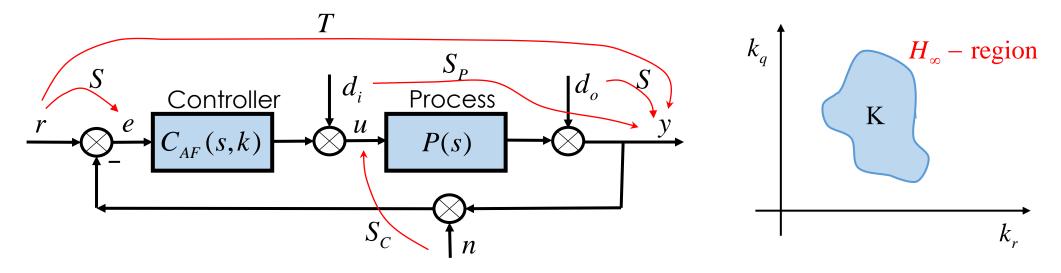
Other Possible Choices of Q(s), R(s), and F(s)

• Converting the selected controller to an affine controller.

Example:
$$C_{LL}(s) = k \cdot \frac{T_1 s + 1}{T_2 s + 1} \rightarrow C_{AF}(s) = k_q + k_r \frac{s}{T_2 s + 1}, \ Q(s) = 1, \ R(s) = \frac{s}{T_2 s + 1}$$

- Selection of Q(s), R(s), and F(s) based on the Internal Model Principle. Example: PR-controller (High gain of $R(s) = \frac{2\omega_c s}{s^2 + 2\omega_c s + \omega_0^2}$ at the frequency ω_0)
- Increasing the control performance by increasing the order of the existing controller $C_0(s)$. Example: $C_{new}(s) = C_0(s) + k_q Q(s) + k_r R(s) \rightarrow F(s) = C_0(s)$

Basic H_{∞} Formulation of Affine-structured Controller Design Problem: Single H_{∞} Constraint



 $H(s,k = [k_q,k_r]) \quad W(s)S_*(s,k), \ S_* \in \{S,T,S_C,S_P\}$ weighted sensitivity function $K \triangleq \left\{ \begin{bmatrix} k_q,k_r \end{bmatrix} : \|H(s,k)\|_{\infty} \triangleq \sup_{\omega} |H(j\omega,k)| \le \gamma, \text{ the closed-loop is internally stable} \right\} \dots H_{\infty} \text{-region in the parameter plane}$ 1) Find the H_{∞} - region K in the k_r - k_q plane.

2) Find the optimal AF-controller in the H_{∞} - region K with respect to some criterion, e.g. $IAE \triangleq \int_{0}^{\infty} |e(t)| dt$ for the step in the reference value *r* (servo problem) or load disturbance d_i (regulator problem).

D-decomposition for one H_{∞} Constraint $||H(s,k)||_{\infty} < \gamma$ $K \triangleq \{k : |H(j\omega,k)| < \gamma, \forall \omega \in [0,\infty)\} = \{k : |H_n(j\omega,k)| < \gamma |H_d(j\omega,k)|, \forall \omega \in [0,\infty)\}$

Theorem 1. [*] The boundary of the set K, called the H_{∞} region, is contained in the solution of the systems		Explicit solution for the case of AF-controller
$\begin{cases} H_n(j\omega,k) = 0, \\ H_d(j\omega,k) = 0, \end{cases}$	(1 <i>a</i>) (1 <i>b</i>)	Straight lines or empty set in the parametric plane $k_q - k_r$.
$\begin{cases} \left H(j\omega,k)\right ^2 = \gamma^2, \\ \frac{d\left H(j\omega,k)\right ^2}{d\omega} = 0, \end{cases}$	(2 <i>a</i>) (2 <i>b</i>)	Critical curves $\varphi_k(\omega)$, $k = 1,,l, l \in \{0, 2, 4\}$, in the parametric plane $k_q - k_r$.
for $\omega \in [0, +\infty)$ and three equations		
$\begin{split} \left H(0,k) \right &= \gamma, \\ \left H(\infty,k) \right &= \gamma, \\ h_d(k) &= 0, \end{split}$	(3) (4) (5)	Straight lines or empty set in the parametric plane $k_q - k_r$.

where h_d is the coefficient at the higher order of a polynomial $H_d(s,k)$.

[*] E. N. Gryazina, B. T. Polyak, A. A. Tremba, D-decomposition technique state-of-the-art, Automation and Remote Control, 2008.

Explicit Solution of the system (2a), (2b) for the constraint $||H(s,k)||_{\infty} < \gamma$, $H(s,k) \triangleq S(s,k)$

Equation (2a) $|H(j\omega,k)|^2 = \gamma^2$ is equivalent to $p_1(\omega,k) = 0$, Equation (2b) $d|H(j\omega,k)|^2/d\omega = 0$ is equivalent to $p_2(\omega,k) = 0$,

where $p_1(\omega, k)$ and $p_2(\omega, k)$ are second-order polynomials with real coefficients in the variables k_a and k_r .

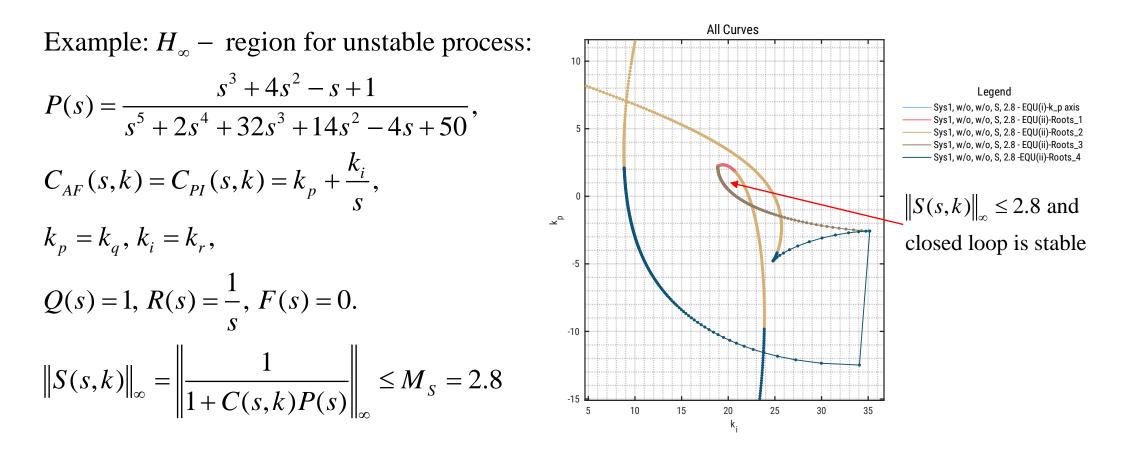
Proposition. The system of polynomial equations

 $p_{1}(\omega,k) = a_{1}(\omega)k_{q}^{2} + b_{1}(\omega)k_{r}^{2} + c_{1}(\omega)k_{q}k_{r} + d_{1}(\omega)k_{q} + e_{1}(\omega)k_{r} + f_{1}(\omega) = 0,$ $p_{2}(\omega,k) = a_{2}(\omega)k_{q}^{2} + b_{2}(\omega)k_{r}^{2} + c_{2}(\omega)k_{q}k_{r} + d_{2}(\omega)k_{q} + e_{2}(\omega)k_{r} + f_{2}(\omega) = 0,$

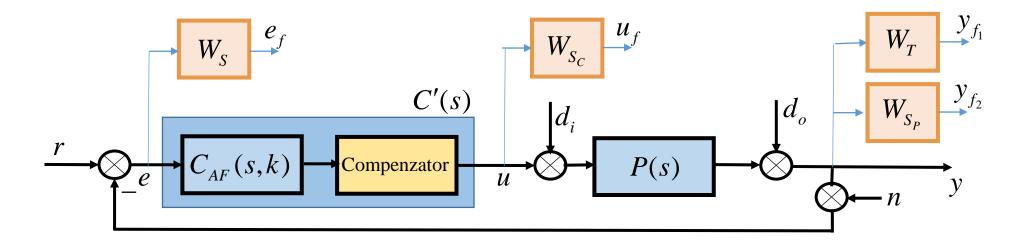
has analytical solutions in radicals. (The solution of this system can be converted to the solution of a polynomial quartic equation with one unknown.) There are two, four, or no real solutions to this system of equations. These solutions determine the parametric curves (critical curves φ_k from Theorem 1) with the parameter ω in the parametric plane of the affine controller.

Main Result: Isolation of H_{∞} - Region

The systems of equations (1), (2) and equations (3),(4) and (5) of Theorem 1 have analytical solutions for affine controller $C_{AF}(s)$ and the rational transfer function P(s). These solutions define the critical curves and lines in the parametric plane that divide it into regions.



H_{∞} Multiple Constraints



The performance or robustness channel

 $H_i \equiv H_i(P, C') = W_i S_{*i}, \quad i = 1, ..., k$

is a scalar weighted closed-loop sensitivity function.

Find all controllers C_{AF} for which it holds $\|H_i(P,C')\|_{\infty} \leq \gamma_i, i = 1,..,k$ subject to *C'* stabilizes *P* internally $C' \triangleq C_{AF}(s,k) \cdot C_{comp}.$

Multi-model Design Objectives

 H_{∞} constraints on the robust/performance channels

The multi-model set:

 $\mathbf{P} \triangleq \left\{ P_1, P_2, \dots, P_n \right\}$

Design objectives:

(i) $\forall P \in P: T(s) \text{ is stable } \land ||W_T(s)T(s)||_{\infty} < \gamma_T,$ (ii) $\forall P \in P: S(s) \text{ is stable } \land ||W_S(s)S(s)||_{\infty} < \gamma_S,$ (iii) $\forall P \in P: S_P(s) \text{ is stable } \land ||W_{S_P}(s)S_P(s)||_{\infty} < \gamma_{S_P},$ (iv) $\forall P \in P: S_C(s) \text{ is stable } \land ||W_{S_C}(s)S_C(s)||_{\infty} < \gamma_{S_C},$ where $W_S, W_T, W_{S_P}, \text{ and } W_{S_C}$ are stable weighting functions, $||H||_{\infty} \triangleq \sup_{P} |H(j\omega)| \text{ is called } H_{\infty} \text{ - norm.}$

Solving the Motivational Task

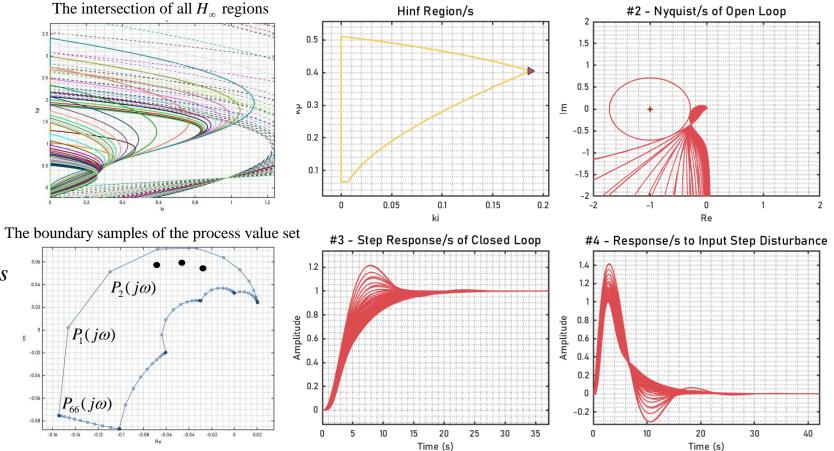
Input:

Model Set:

 $\omega_0 = 1$, $P(j\omega_0) = e^{j^{*1.8}},$ N = 10, $\mathbf{P} \triangleq \{P_1, P_2, \dots, P_{66}\},\$ $P_i, i = 1, ..., 66$ samples of extremal systems^{*} Design specification: PI-controller: $C_{PI}(s) = k_p + k_i \cdot 1/s$ $\forall P \in \mathbf{P} : \left\| S(s,k) \right\| \le 1.4,$ maximum integral gain

Output:

 $k_p = 0.4725$ $k_i = 0.3109$

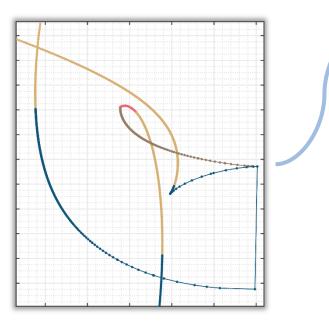


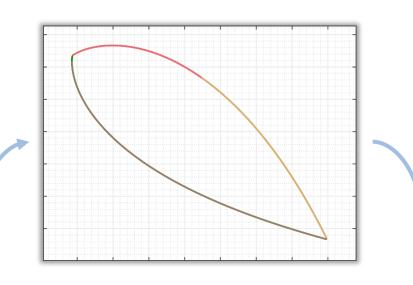
Sketch of H_{∞} region isolation algorithm

Single Specification Problem

STEP 1

Finding all critical points/curves in the parametric plane



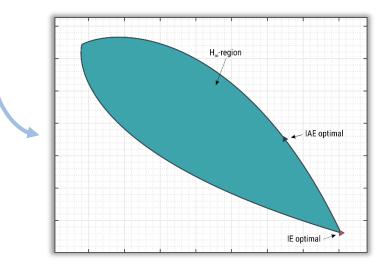


STEP 2

Select parts that meet Hinf specifications and the condition of internal stability

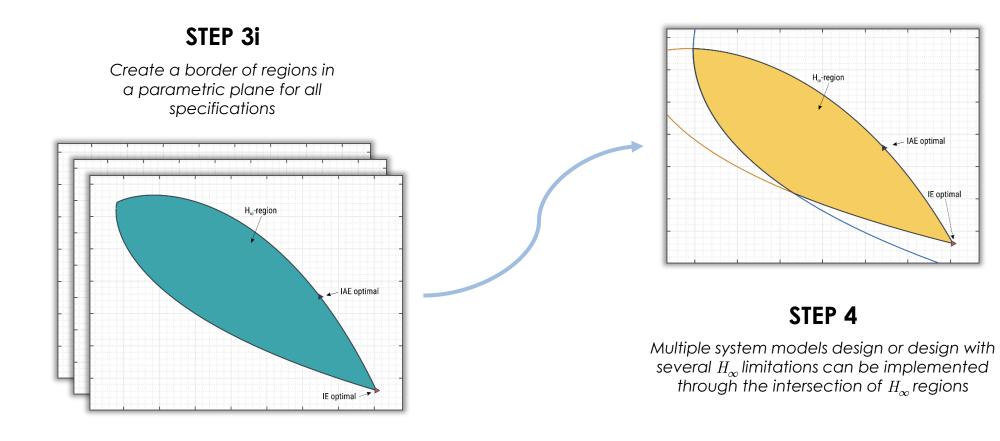
STEP 3

Create a border of region in a parametric plane



Sketch of H_{∞} region isolation algorithm

Multiple Specification Problem



PID H_{∞} Designer

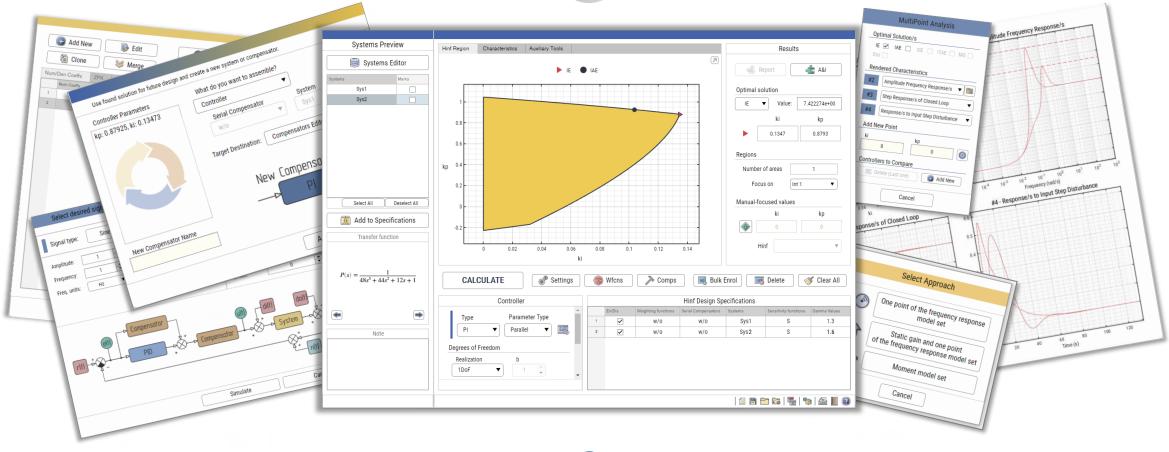
www.pidlab.com

PID H_{∞} Designer

StepByStep

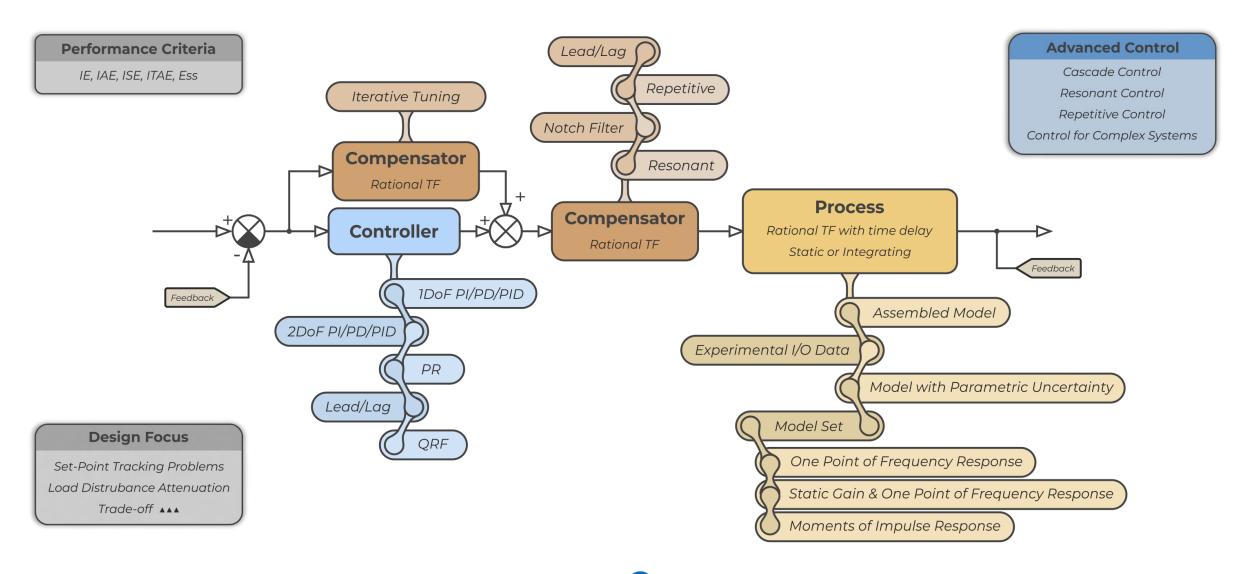
PID H_{∞} Designer

WorkSpace



PID H_{...} Designer

PID H_∞ Designer: Options



Examples

Design Specification of Robust PI-controller for Process Model Set

Proces model set:
$$\mathbf{P} \triangleq \left\{ P_1(s) = \frac{-0.0216s + 0.0031}{s^2 + 0.457s + 0.0868} e^{-0.166s}, P_2(s) = \frac{-0.0174s + 0.0046}{s^2 + 0.5978s + 0.0445} e^{-0.166s} \right\}$$

Requirements

, 2

Controller :

$$C_{PI}(s) = K \left(1 + \frac{1}{T_i s} \right) = k_p + \frac{k_i}{s}$$

Design focus : Load step disturbance rejection (regulator problem)

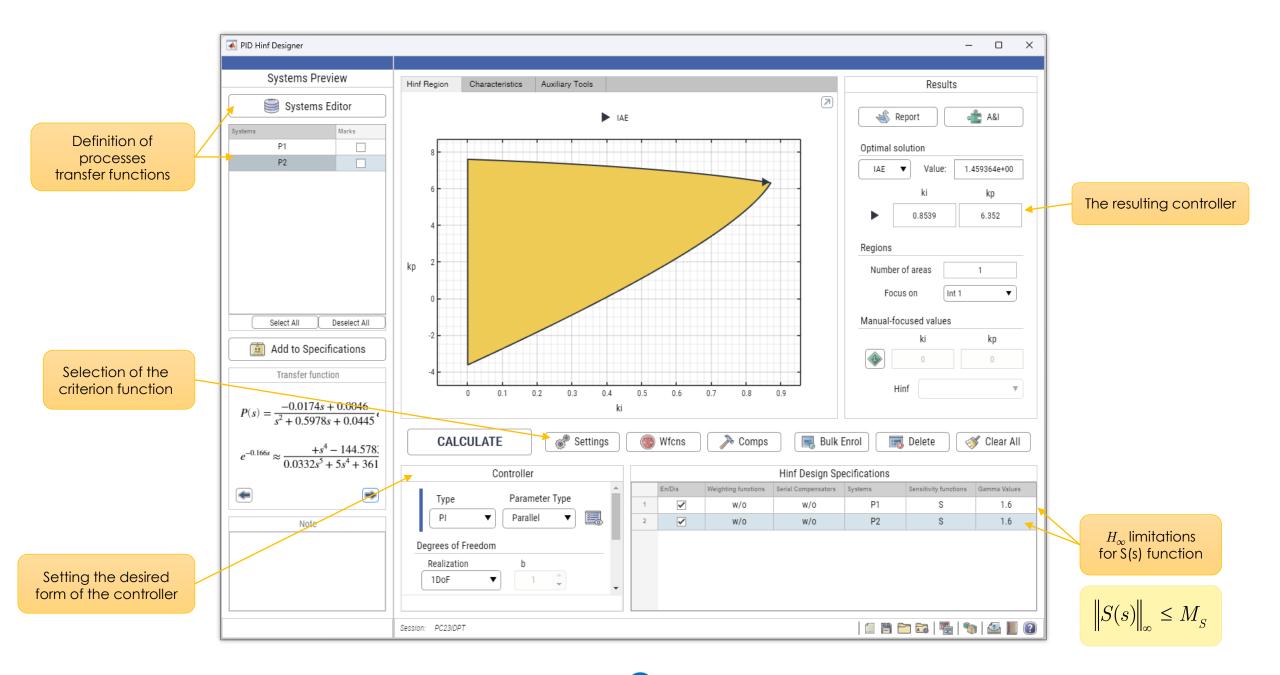
Formulation of the design problem

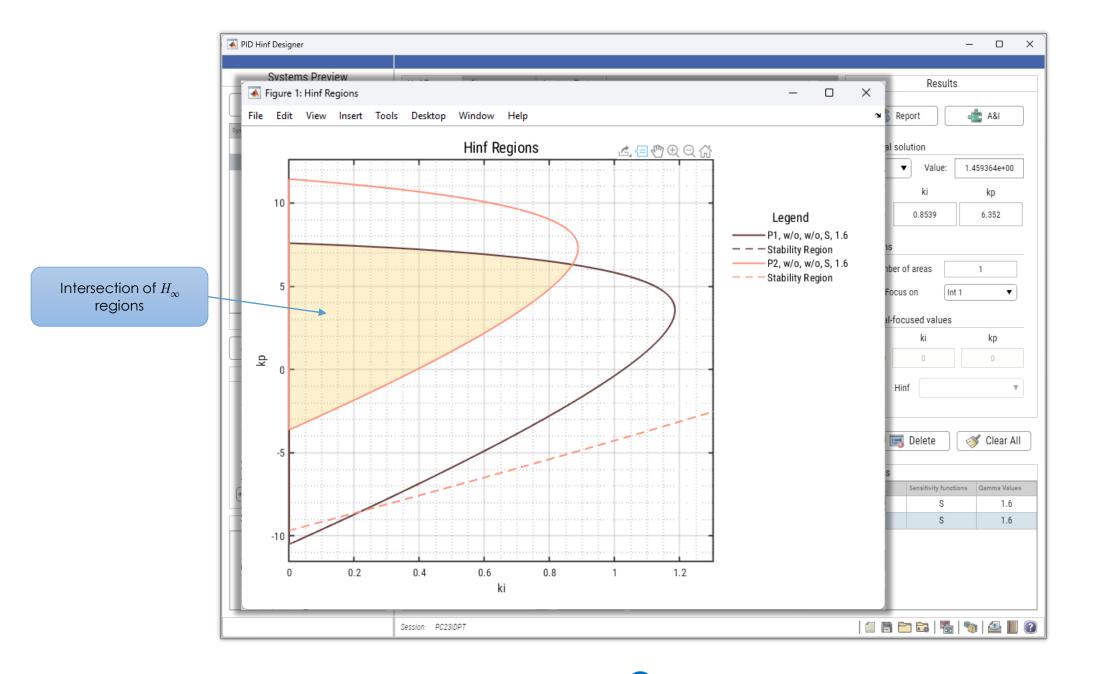
Sensitivity functions :

Weighting functions :

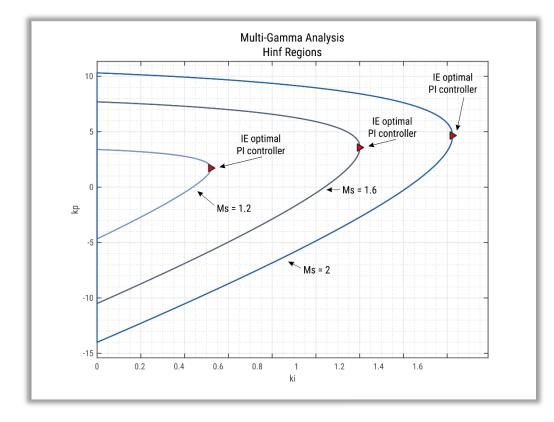
Design criterion :

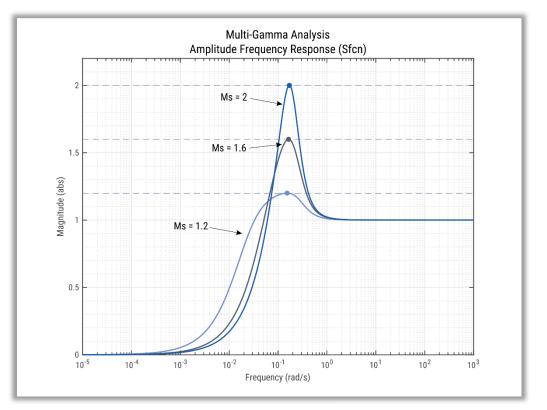
$$\begin{split} S_i(s) &= \frac{1}{1 + C_{_{PI}}(s)P_i(s)}, \ i = 1 \\ W_i(s) &= 1, \ i = 1, 2 \\ \min_{C_{_{PI}}} \max_{i \in \{1,2\}} \int_0^\infty \Bigl| e_i(t) \Bigr| \, dt \end{split}$$





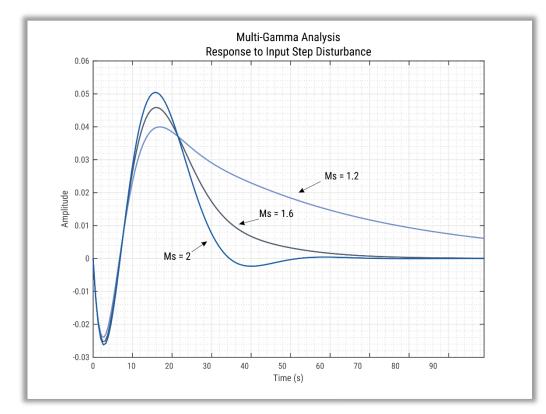
Selection of Gamma (Ms) Value

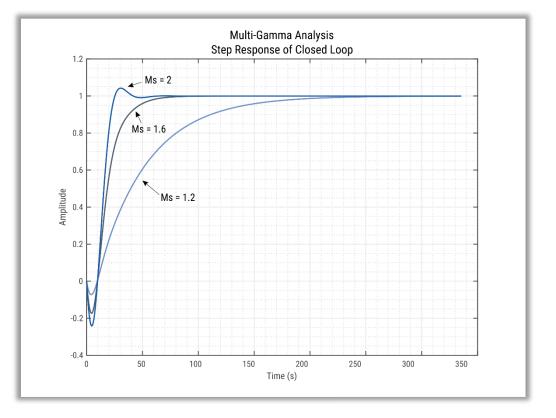




Amplitude frequency response of sensitivity function S(s) for IE optimal PI controllers

Selection of Gamma (Ms) Value





Grid Connected Photovoltaic Inverter

LCL filter with processing delay

for Single phase 3 kW Grid-Connected Photovoltaic Inverter system

$$P(s) = \frac{1}{1e - 4s + 1} \cdot \frac{s^2 + 1.143e4s + 1.587e8}{1.2e - 3s^3 + 21.71s^2 + 3.016e5s}$$

Requirements

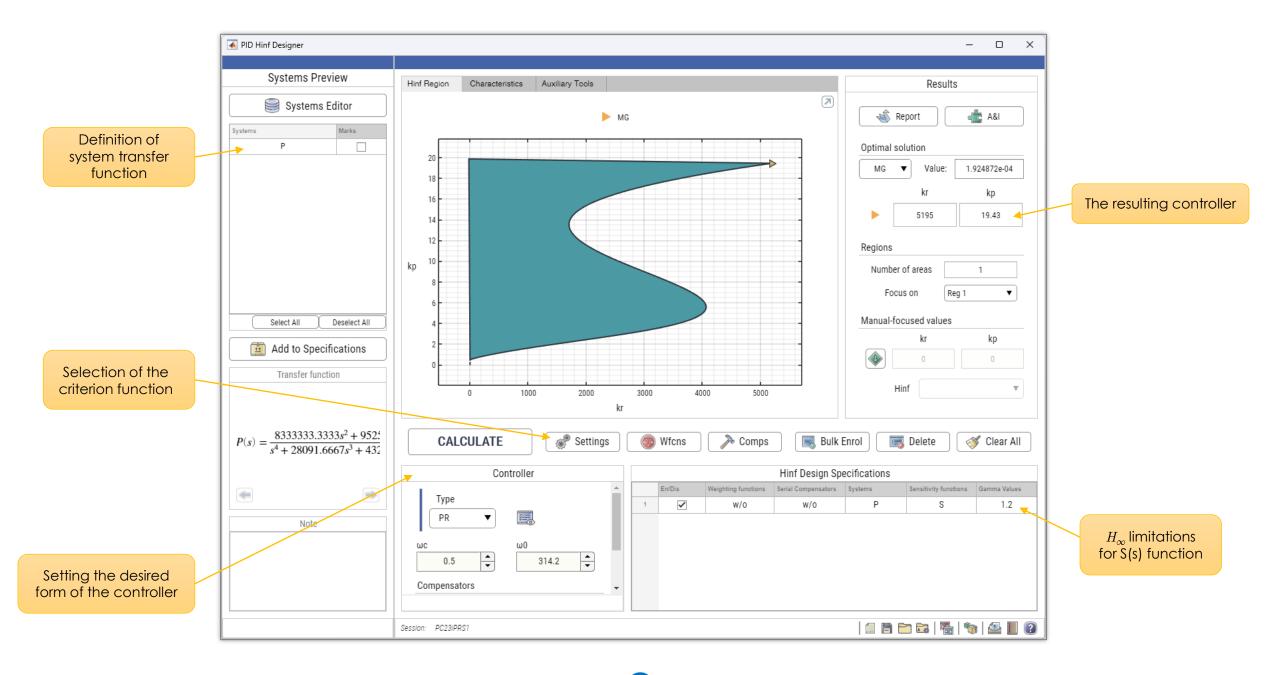
Controller:

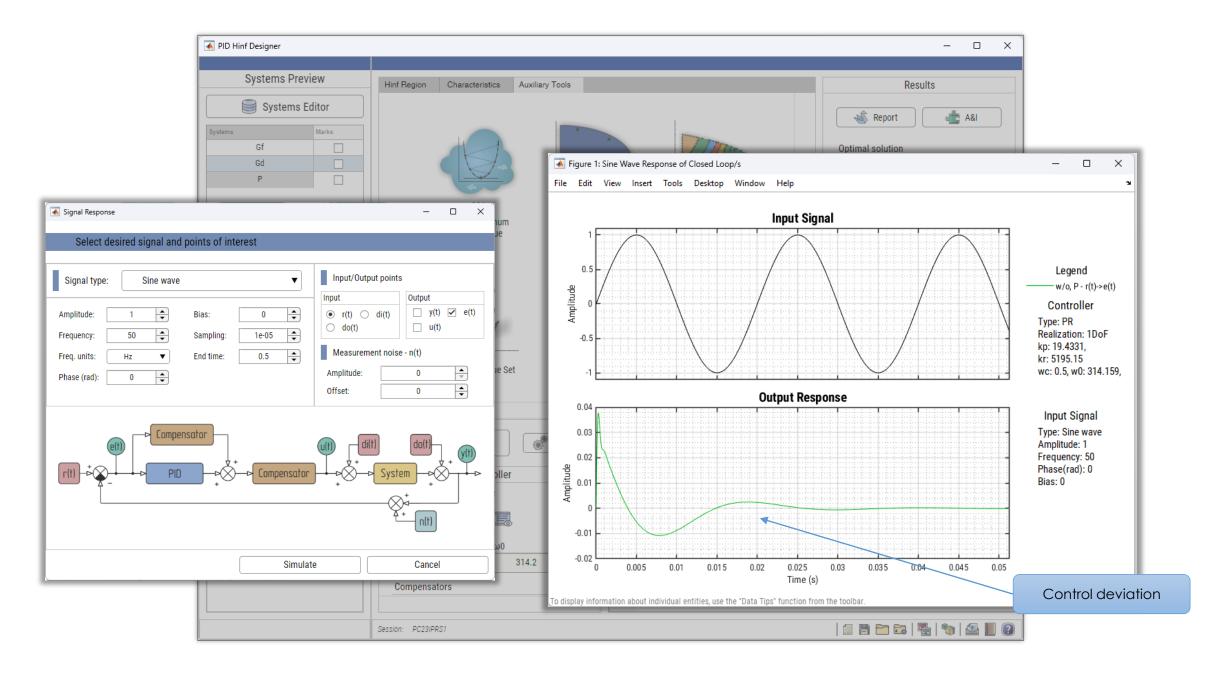
$$C_{PR}(s) = k_p + k_r \frac{2\omega_c s}{s^2 + 2\omega_c s + \omega_0^2}$$

Design focus:

Track a current 50Hz sinusoidal reference waveform (servo problem)

Formulation of the design problemSensitivity functions: $S(s) = \frac{1}{1 + C_{PR}(s)P(s)}$ Weighting functions:W(s) = 1Design parameters: $\omega_0 = 314.2rad / s, \ \omega_c = 0.5rad / s$ Design criterion : $\max_{C_{PR}} k_r$





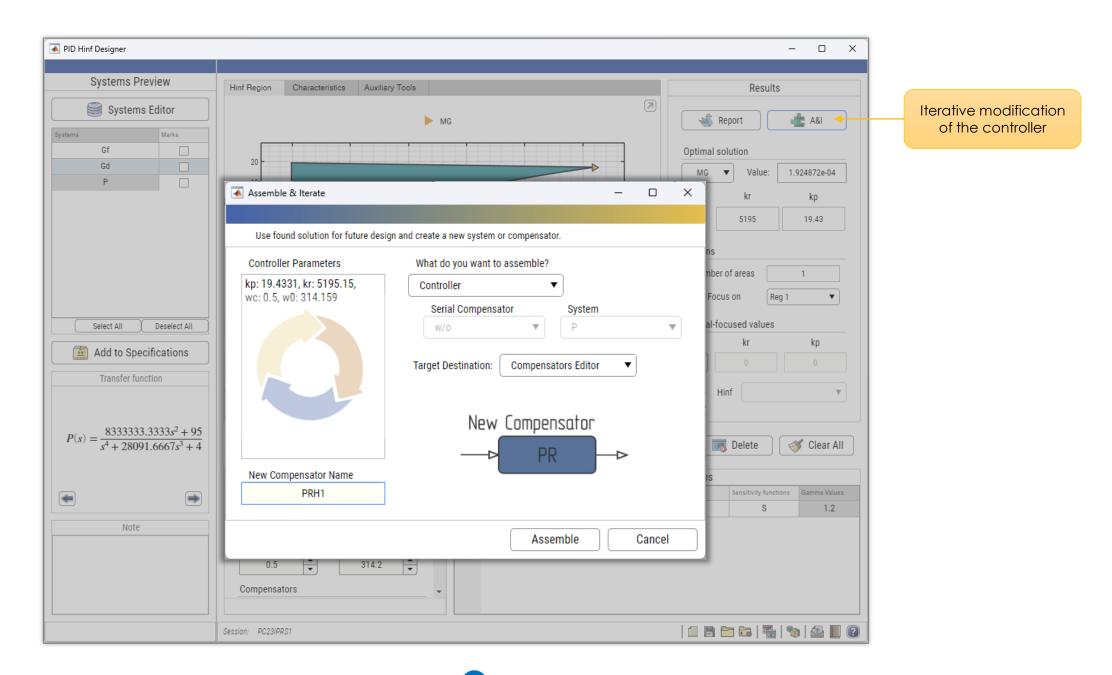


Plate Heat Exchanger

Description of the process based on experimentally obtained Input/Output data

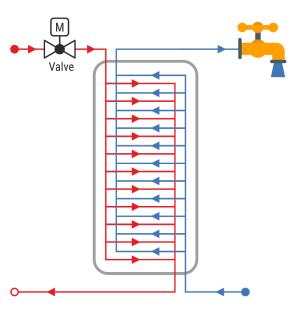
Requirements

Controller:

Design focus:

$$_{PI}(s) = K\left(1 + \frac{1}{T_i s}\right) = k_p + \frac{k_i}{s}$$

Track reference temperature setpoint (servo problem)



Formulation of the design problem

Sensitivity functions:

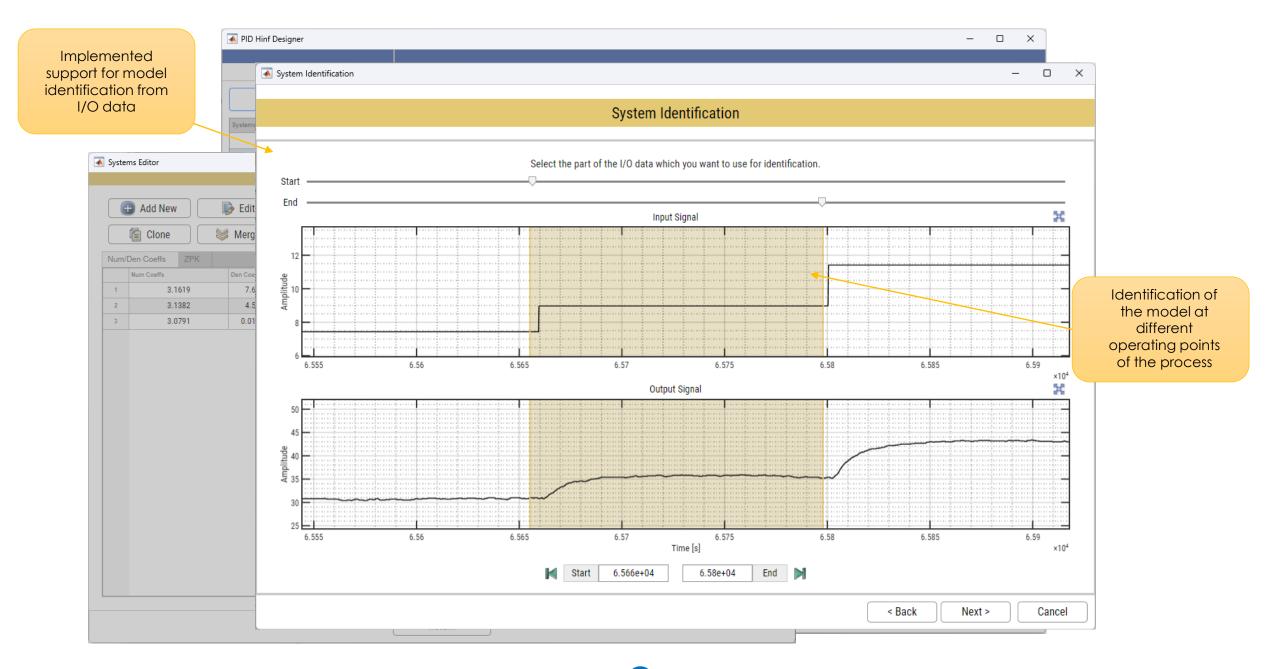
C

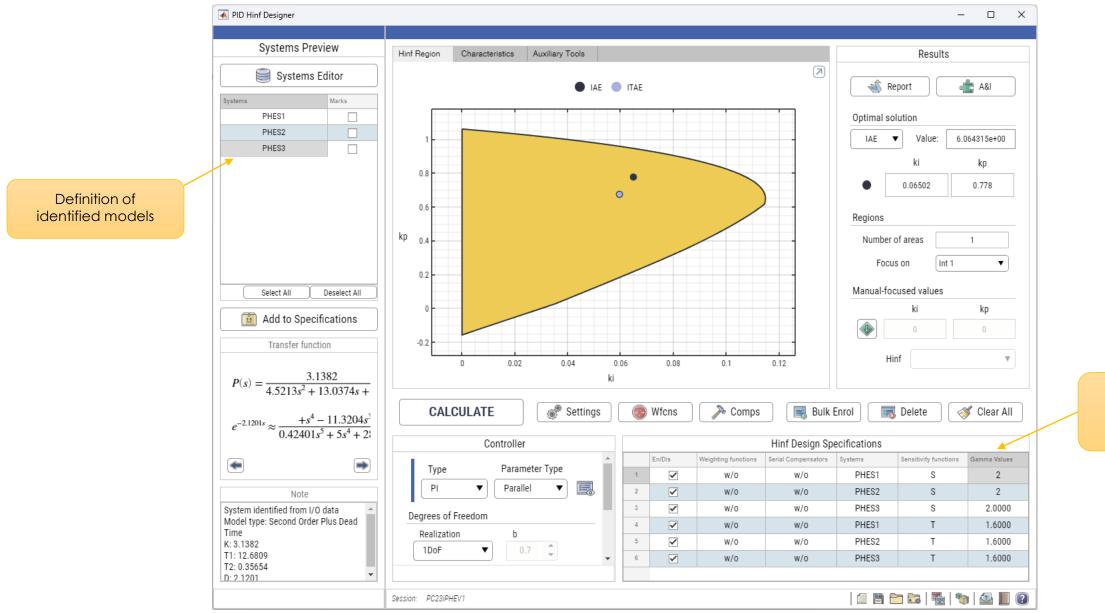
Weighting functions:

Design criterion:

$$\begin{split} S_i(s) &= \frac{1}{1 + C_{_{PI}}(s)P_i(s)}, \quad T_i(s) = \frac{C_{_{PI}}(s)P_i(s)}{1 + C_{_{PI}}(s)P_i(s)}, \quad i = 1, 2 \\ W_{_{S_i}}(s) &= 1, \quad W_{_{T_i}}(s) = 1, \quad i = 1, 2, 3 \\ \min_{C_{_{PI}}} \max_{i \in \{1,2,3\}} \int_0^\infty \left| e_i(t) \right| dt, \quad \min_{C_{_{PI}}} \max_{i \in \{1,2,3\}} \int_0^\infty t \left| e_i(t) \right| dt \end{split}$$

,3





 H_{∞} limitations for S(s) and T(s) functions

Conclusion

- New analytical method for the design of the H_{∞} affine controller
- Affine controller includes almost all fixed structure controllers commonly used in practice

$$C(s, \mathbf{k}) \triangleq k_q Q(s) + k_r R(s) + F(s), \, \mathbf{k} \triangleq \left[k_r, k_q\right]^T \in \mathbb{R}^2$$

• Web tool PID H_w Designer (www.pidlab.com)